Line data Source code
1 : /*
2 : * Copyright (c) 2016 Cisco and/or its affiliates.
3 : * Licensed under the Apache License, Version 2.0 (the "License");
4 : * you may not use this file except in compliance with the License.
5 : * You may obtain a copy of the License at:
6 : *
7 : * http://www.apache.org/licenses/LICENSE-2.0
8 : *
9 : * Unless required by applicable law or agreed to in writing, software
10 : * distributed under the License is distributed on an "AS IS" BASIS,
11 : * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 : * See the License for the specific language governing permissions and
13 : * limitations under the License.
14 : */
15 : /*
16 : Copyright (c) 2001, 2002, 2003 Eliot Dresselhaus
17 :
18 : Permission is hereby granted, free of charge, to any person obtaining
19 : a copy of this software and associated documentation files (the
20 : "Software"), to deal in the Software without restriction, including
21 : without limitation the rights to use, copy, modify, merge, publish,
22 : distribute, sublicense, and/or sell copies of the Software, and to
23 : permit persons to whom the Software is furnished to do so, subject to
24 : the following conditions:
25 :
26 : The above copyright notice and this permission notice shall be
27 : included in all copies or substantial portions of the Software.
28 :
29 : THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 : EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 : MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 : NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
33 : LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
34 : OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
35 : WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
36 : */
37 :
38 : /** \file
39 :
40 : Optimized string handling code, including c11-compliant
41 : "safe C library" variants.
42 : */
43 :
44 : #ifndef included_clib_string_h
45 : #define included_clib_string_h
46 :
47 : #include <vppinfra/clib.h> /* for CLIB_LINUX_KERNEL */
48 : #include <vppinfra/vector.h>
49 : #include <vppinfra/error_bootstrap.h>
50 : #ifdef __SSE4_2__
51 : #include <vppinfra/memcpy_x86_64.h>
52 : #endif
53 :
54 : #ifdef CLIB_LINUX_KERNEL
55 : #include <linux/string.h>
56 : #endif
57 :
58 : #ifdef CLIB_UNIX
59 : #include <string.h>
60 : #endif
61 :
62 : #ifdef CLIB_STANDALONE
63 : #include <vppinfra/standalone_string.h>
64 : #endif
65 :
66 : #if _x86_64_
67 : #include <x86intrin.h>
68 : #endif
69 :
70 : /* Exchanges source and destination. */
71 : void clib_memswap (void *_a, void *_b, uword bytes);
72 :
73 :
74 : static_always_inline void *
75 2176203116 : clib_memcpy_fast (void *restrict dst, const void *restrict src, size_t n)
76 : {
77 2176203116 : ASSERT (dst && src &&
78 : "memcpy(src, dst, n) with src == NULL or dst == NULL is undefined "
79 : "behaviour");
80 : #if defined(__COVERITY__)
81 : return memcpy (dst, src, n);
82 : #elif defined(__SSE4_2__)
83 2176203526 : clib_memcpy_x86_64 (dst, src, n);
84 2176259476 : return dst;
85 : #else
86 : return memcpy (dst, src, n);
87 : #endif
88 : }
89 :
90 : static_always_inline void *
91 56875915 : clib_memmove (void *dst, const void *src, size_t n)
92 : {
93 56875915 : u8 *d = (u8 *) dst;
94 56875915 : u8 *s = (u8 *) src;
95 :
96 56875915 : if (s == d)
97 0 : return d;
98 :
99 56875915 : if (d > s)
100 8969818422 : for (uword i = n - 1; (i + 1) > 0; i--)
101 8913121370 : d[i] = s[i];
102 : else
103 429447319 : for (uword i = 0; i < n; i++)
104 429267659 : d[i] = s[i];
105 :
106 56875915 : return d;
107 : }
108 :
109 : #include <vppinfra/memcpy.h>
110 :
111 : /* c-11 string manipulation variants */
112 :
113 : #ifndef EOK
114 : #define EOK 0
115 : #endif
116 : #ifndef EINVAL
117 : #define EINVAL 22
118 : #endif
119 : #ifndef ESRCH
120 : #define ESRCH 3
121 : #endif
122 : #ifndef EOVERFLOW
123 : #define EOVERFLOW 75
124 : #endif
125 :
126 : /*
127 : * In order to provide smooth mapping from unsafe string API to the clib string
128 : * macro, we often have to improvise s1max and s2max due to the additional
129 : * arguments are required for implementing the safe API. This macro is used
130 : * to provide the s1max/s2max. It is not perfect because the actual
131 : * s1max/s2max may be greater than 4k and the mapping from the unsafe API to
132 : * the macro would cause a regression. However, it is not terribly likely.
133 : * So I bet against the odds.
134 : */
135 : #define CLIB_STRING_MACRO_MAX 4096
136 :
137 : typedef int errno_t;
138 : typedef uword rsize_t;
139 :
140 : void clib_c11_violation (const char *s);
141 : errno_t memcpy_s (void *__restrict__ dest, rsize_t dmax,
142 : const void *__restrict__ src, rsize_t n);
143 :
144 : always_inline errno_t
145 73946807 : memcpy_s_inline (void *__restrict__ dest, rsize_t dmax,
146 : const void *__restrict__ src, rsize_t n)
147 : {
148 : uword low, hi;
149 : u8 bad;
150 :
151 : /*
152 : * Optimize constant-number-of-bytes calls without asking
153 : * "too many questions for someone from New Jersey"
154 : */
155 : if (COMPILE_TIME_CONST (n))
156 : {
157 : clib_memcpy_fast (dest, src, n);
158 : return EOK;
159 : }
160 :
161 : /*
162 : * call bogus if: src or dst NULL, trying to copy
163 : * more data than we have space in dst, or src == dst.
164 : * n == 0 isn't really "bad", so check first in the
165 : * "wall-of-shame" department...
166 : */
167 73946807 : bad = (dest == 0) + (src == 0) + (n > dmax) + (dest == src) + (n == 0);
168 73946807 : if (PREDICT_FALSE (bad != 0))
169 : {
170 : /* Not actually trying to copy anything is OK */
171 163078 : if (n == 0)
172 163078 : return EOK;
173 0 : if (dest == NULL)
174 0 : clib_c11_violation ("dest NULL");
175 0 : if (src == NULL)
176 0 : clib_c11_violation ("src NULL");
177 0 : if (n > dmax)
178 0 : clib_c11_violation ("n > dmax");
179 0 : if (dest == src)
180 0 : clib_c11_violation ("dest == src");
181 0 : return EINVAL;
182 : }
183 :
184 : /* Check for src/dst overlap, which is not allowed */
185 73783729 : low = (uword) (src < dest ? src : dest);
186 73783729 : hi = (uword) (src < dest ? dest : src);
187 :
188 73783729 : if (PREDICT_FALSE (low + (n - 1) >= hi))
189 : {
190 2 : clib_c11_violation ("src/dest overlap");
191 2 : return EINVAL;
192 : }
193 :
194 73783727 : clib_memcpy_fast (dest, src, n);
195 73783725 : return EOK;
196 : }
197 :
198 : /*
199 : * Note: $$$ This macro is a crutch. Folks need to manually
200 : * inspect every extant clib_memcpy(...) call and
201 : * attempt to provide a real destination buffer size
202 : * argument...
203 : */
204 : #define clib_memcpy(d,s,n) memcpy_s_inline(d,n,s,n)
205 :
206 : errno_t memset_s (void *s, rsize_t smax, int c, rsize_t n);
207 :
208 : always_inline errno_t
209 243565722 : memset_s_inline (void *s, rsize_t smax, int c, rsize_t n)
210 : {
211 : u8 bad;
212 :
213 243565722 : bad = (s == 0) + (n > smax);
214 :
215 243565722 : if (PREDICT_FALSE (bad != 0))
216 : {
217 1 : if (s == 0)
218 0 : clib_c11_violation ("s NULL");
219 1 : if (n > smax)
220 1 : clib_c11_violation ("n > smax");
221 1 : return (EINVAL);
222 : }
223 243565721 : memset (s, c, n);
224 243565721 : return (EOK);
225 : }
226 :
227 : /*
228 : * This macro is not [so much of] a crutch.
229 : * It's super-typical to write:
230 : *
231 : * ep = pool_get (<pool>);
232 : * clib_memset(ep, 0, sizeof (*ep));
233 : *
234 : * The compiler should delete the not-so useful
235 : * (n > smax) test. TBH the NULL pointer check isn't
236 : * so useful in this case, but so be it.
237 : */
238 : #define clib_memset(s,c,n) memset_s_inline(s,n,c,n)
239 :
240 : static_always_inline void
241 441702 : clib_memcpy_le (u8 * dst, u8 * src, u8 len, u8 max_len)
242 : {
243 : #if defined (CLIB_HAVE_VEC256)
244 : u8x32 s0, s1, d0, d1;
245 441702 : u8x32 mask = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
246 : 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
247 : };
248 441702 : u8x32 lv = u8x32_splat (len);
249 441702 : u8x32 add = u8x32_splat (32);
250 :
251 441702 : s0 = u8x32_load_unaligned (src);
252 441702 : s1 = u8x32_load_unaligned (src + 32);
253 441702 : d0 = u8x32_load_unaligned (dst);
254 441702 : d1 = u8x32_load_unaligned (dst + 32);
255 :
256 441702 : d0 = u8x32_blend (d0, s0, lv > mask);
257 441702 : u8x32_store_unaligned (d0, dst);
258 :
259 441702 : if (max_len <= 32)
260 143544 : return;
261 :
262 298158 : mask += add;
263 298158 : d1 = u8x32_blend (d1, s1, lv > mask);
264 298158 : u8x32_store_unaligned (d1, dst + 32);
265 :
266 : #elif defined (CLIB_HAVE_VEC128)
267 : u8x16 s0, s1, s2, s3, d0, d1, d2, d3;
268 0 : u8x16 mask = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
269 0 : u8x16 lv = u8x16_splat (len);
270 0 : u8x16 add = u8x16_splat (16);
271 :
272 0 : s0 = u8x16_load_unaligned (src);
273 0 : s1 = u8x16_load_unaligned (src + 16);
274 0 : s2 = u8x16_load_unaligned (src + 32);
275 0 : s3 = u8x16_load_unaligned (src + 48);
276 0 : d0 = u8x16_load_unaligned (dst);
277 0 : d1 = u8x16_load_unaligned (dst + 16);
278 0 : d2 = u8x16_load_unaligned (dst + 32);
279 0 : d3 = u8x16_load_unaligned (dst + 48);
280 :
281 0 : d0 = u8x16_blend (d0, s0, lv > mask);
282 0 : u8x16_store_unaligned (d0, dst);
283 :
284 0 : if (max_len <= 16)
285 0 : return;
286 :
287 0 : mask += add;
288 0 : d1 = u8x16_blend (d1, s1, lv > mask);
289 0 : u8x16_store_unaligned (d1, dst + 16);
290 :
291 0 : if (max_len <= 32)
292 0 : return;
293 :
294 0 : mask += add;
295 0 : d2 = u8x16_blend (d2, s2, lv > mask);
296 0 : u8x16_store_unaligned (d2, dst + 32);
297 :
298 0 : mask += add;
299 0 : d3 = u8x16_blend (d3, s3, lv > mask);
300 0 : u8x16_store_unaligned (d3, dst + 48);
301 : #else
302 : memmove (dst, src, len);
303 : #endif
304 : }
305 :
306 : static_always_inline void
307 298158 : clib_memcpy_le64 (u8 * dst, u8 * src, u8 len)
308 : {
309 298158 : clib_memcpy_le (dst, src, len, 64);
310 298158 : }
311 :
312 : static_always_inline void
313 143544 : clib_memcpy_le32 (u8 * dst, u8 * src, u8 len)
314 : {
315 143544 : clib_memcpy_le (dst, src, len, 32);
316 143544 : }
317 :
318 : static_always_inline void
319 : clib_memset_u64 (void *p, u64 val, uword count)
320 : {
321 : u64 *ptr = p;
322 : #if defined(CLIB_HAVE_VEC512)
323 : u64x8 v512 = u64x8_splat (val);
324 : while (count >= 8)
325 : {
326 : u64x8_store_unaligned (v512, ptr);
327 : ptr += 8;
328 : count -= 8;
329 : }
330 : if (count == 0)
331 : return;
332 : #endif
333 : #if defined(CLIB_HAVE_VEC256)
334 : u64x4 v256 = u64x4_splat (val);
335 : while (count >= 4)
336 : {
337 : u64x4_store_unaligned (v256, ptr);
338 : ptr += 4;
339 : count -= 4;
340 : }
341 : if (count == 0)
342 : return;
343 : #else
344 : #if defined(CLIB_HAVE_VEC128)
345 : u64x2 v = u64x2_splat (val);
346 : #endif
347 : while (count >= 4)
348 : {
349 : #if defined(CLIB_HAVE_VEC128)
350 : u64x2_store_unaligned (v, ptr);
351 : u64x2_store_unaligned (v, ptr + 2);
352 : #else
353 : ptr[0] = ptr[1] = ptr[2] = ptr[3] = val;
354 : #endif
355 : ptr += 4;
356 : count -= 4;
357 : }
358 : #endif
359 : while (count--)
360 : ptr++[0] = val;
361 : }
362 :
363 : static_always_inline void
364 1221025 : clib_memset_u32 (void *p, u32 val, uword count)
365 : {
366 1221025 : u32 *ptr = p;
367 : #if defined(CLIB_HAVE_VEC512)
368 0 : u32x16 v512 = u32x16_splat (val);
369 0 : while (count >= 16)
370 : {
371 0 : u32x16_store_unaligned (v512, ptr);
372 0 : ptr += 16;
373 0 : count -= 16;
374 : }
375 0 : if (count == 0)
376 0 : return;
377 : #endif
378 : #if defined(CLIB_HAVE_VEC256)
379 1210060 : u32x8 v256 = u32x8_splat (val);
380 5141090 : while (count >= 8)
381 : {
382 3931040 : u32x8_store_unaligned (v256, ptr);
383 3931040 : ptr += 8;
384 3931040 : count -= 8;
385 : }
386 1210060 : if (count == 0)
387 202147 : return;
388 : #endif
389 : #if defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_UNALIGNED_LOAD_STORE)
390 1018875 : u32x4 v128 = u32x4_splat (val);
391 15759619 : while (count >= 4)
392 : {
393 14740747 : u32x4_store_unaligned (v128, ptr);
394 14740747 : ptr += 4;
395 14740747 : count -= 4;
396 : }
397 : #else
398 : while (count >= 4)
399 : {
400 : ptr[0] = ptr[1] = ptr[2] = ptr[3] = val;
401 : ptr += 4;
402 : count -= 4;
403 : }
404 : #endif
405 2771455 : while (count--)
406 1752580 : ptr++[0] = val;
407 10965 : }
408 :
409 : static_always_inline void
410 1648925 : clib_memset_u16 (void *p, u16 val, uword count)
411 : {
412 1648925 : u16 *ptr = p;
413 : #if defined(CLIB_HAVE_VEC512)
414 0 : u16x32 v512 = u16x32_splat (val);
415 0 : while (count >= 32)
416 : {
417 0 : u16x32_store_unaligned (v512, ptr);
418 0 : ptr += 32;
419 0 : count -= 32;
420 : }
421 0 : if (count == 0)
422 0 : return;
423 : #endif
424 : #if defined(CLIB_HAVE_VEC256)
425 1648848 : u16x16 v256 = u16x16_splat (val);
426 4965228 : while (count >= 16)
427 : {
428 3316390 : u16x16_store_unaligned (v256, ptr);
429 3316390 : ptr += 16;
430 3316390 : count -= 16;
431 : }
432 1648848 : if (count == 0)
433 146177 : return;
434 : #endif
435 : #if defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_UNALIGNED_LOAD_STORE)
436 1502746 : u16x8 v128 = u16x8_splat (val);
437 1961435 : while (count >= 8)
438 : {
439 458694 : u16x8_store_unaligned (v128, ptr);
440 458694 : ptr += 8;
441 458694 : count -= 8;
442 : }
443 : #else
444 : while (count >= 4)
445 : {
446 : ptr[0] = ptr[1] = ptr[2] = ptr[3] = val;
447 : ptr += 4;
448 : count -= 4;
449 : }
450 : #endif
451 6260797 : while (count--)
452 4758051 : ptr++[0] = val;
453 77 : }
454 :
455 : static_always_inline void
456 178178334 : clib_memset_u8 (void *p, u8 val, uword count)
457 : {
458 178178334 : u8 *ptr = p;
459 : #if defined(CLIB_HAVE_VEC512)
460 0 : u8x64 v512 = u8x64_splat (val);
461 0 : while (count >= 64)
462 : {
463 0 : u8x64_store_unaligned (v512, ptr);
464 0 : ptr += 64;
465 0 : count -= 64;
466 : }
467 0 : if (count == 0)
468 0 : return;
469 : #endif
470 : #if defined(CLIB_HAVE_VEC256)
471 40994363 : u8x32 v256 = u8x32_splat (val);
472 46752937 : while (count >= 32)
473 : {
474 5758578 : u8x32_store_unaligned (v256, ptr);
475 5758578 : ptr += 32;
476 5758578 : count -= 32;
477 : }
478 40994363 : if (count == 0)
479 176996 : return;
480 : #endif
481 : #if defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_UNALIGNED_LOAD_STORE)
482 178001338 : u8x16 v128 = u8x16_splat (val);
483 17197051812 : while (count >= 16)
484 : {
485 17019121628 : u8x16_store_unaligned (v128, ptr);
486 17019121623 : ptr += 16;
487 17019121623 : count -= 16;
488 : }
489 : #else
490 : while (count >= 4)
491 : {
492 : ptr[0] = ptr[1] = ptr[2] = ptr[3] = val;
493 : ptr += 4;
494 : count -= 4;
495 : }
496 : #endif
497 815872937 : while (count--)
498 637869424 : ptr++[0] = val;
499 137185398 : }
500 :
501 :
502 : /*
503 : * This macro is to provide smooth mapping from memcmp to memcmp_s.
504 : * memcmp has fewer parameters and fewer returns than memcmp_s.
505 : * This macro is somewhat a crutch. When err != EOK is returned from memcmp_s,
506 : * we return 0 and spit out a message in the console because there is
507 : * no way to return the error code to the memcmp callers.
508 : * This condition happens when s1 or s2 is null. Please note
509 : * in the extant memcmp calls, if s1, s2, or both are null, memcmp returns 0
510 : * anyway. So we are consistent in this case for the comparison return
511 : * although we also spit out a C11 violation message in the console to
512 : * warn that they pass null pointers for both s1 and s2.
513 : * Applications are encouraged to use the cool C11 memcmp_s API to get the
514 : * maximum benefit out of it.
515 : */
516 : #define clib_memcmp(s1,s2,m1) \
517 : ({ int __diff = 0; \
518 : memcmp_s_inline (s1, m1, s2, m1, &__diff); \
519 : __diff; \
520 : })
521 :
522 : errno_t memcmp_s (const void *s1, rsize_t s1max, const void *s2,
523 : rsize_t s2max, int *diff);
524 :
525 : always_inline errno_t
526 4241 : memcmp_s_inline (const void *s1, rsize_t s1max, const void *s2, rsize_t s2max,
527 : int *diff)
528 : {
529 : u8 bad;
530 :
531 4241 : bad = (s1 == 0) + (s2 == 0) + (diff == 0) + (s2max > s1max) + (s2max == 0) +
532 4241 : (s1max == 0);
533 :
534 4241 : if (PREDICT_FALSE (bad != 0))
535 : {
536 3 : if (s1 == NULL)
537 2 : clib_c11_violation ("s1 NULL");
538 3 : if (s2 == NULL)
539 2 : clib_c11_violation ("s2 NULL");
540 3 : if (diff == NULL)
541 1 : clib_c11_violation ("diff NULL");
542 3 : if (s2max > s1max)
543 1 : clib_c11_violation ("s2max > s1max");
544 3 : if (s2max == 0)
545 2 : clib_c11_violation ("s2max 0");
546 3 : if (s1max == 0)
547 2 : clib_c11_violation ("s1max 0");
548 3 : return EINVAL;
549 : }
550 :
551 4238 : if (PREDICT_FALSE (s1 == s2))
552 : {
553 38 : *diff = 0;
554 38 : return EOK;
555 : }
556 :
557 4200 : *diff = memcmp (s1, s2, s2max);
558 4200 : return EOK;
559 : }
560 :
561 : /*
562 : * This macro is to provide smooth mapping from strnlen to strnlen_s
563 : */
564 : #define clib_strnlen(s,m) strnlen_s_inline(s,m)
565 :
566 : size_t strnlen_s (const char *s, size_t maxsize);
567 :
568 : always_inline size_t
569 1165028 : strnlen_s_inline (const char *s, size_t maxsize)
570 : {
571 : u8 bad;
572 :
573 1165028 : bad = (s == 0) + (maxsize == 0);
574 1165028 : if (PREDICT_FALSE (bad != 0))
575 : {
576 3 : if (s == 0)
577 2 : clib_c11_violation ("s NULL");
578 3 : if (maxsize == 0)
579 3 : clib_c11_violation ("maxsize 0");
580 3 : return 0;
581 : }
582 1165027 : return strnlen (s, maxsize);
583 : }
584 :
585 : /*
586 : * This macro is to provide smooth mapping from strcmp to strcmp_s.
587 : * strcmp has fewer parameters and fewer returns than strcmp_s.
588 : * This macro is somewhat a crutch. When err != EOK is returned from strcmp_s,
589 : * we return 0 and spit out a message in the console because
590 : * there is no way to return the error to the strcmp callers.
591 : * This condition happens when s1 or s2 is null. Please note in the extant
592 : * strcmp call, they would end up crashing if one of them is null.
593 : * So the new behavior is no crash, but an error is displayed in the
594 : * console which I think is more user friendly. If both s1 and s2 are null,
595 : * strcmp returns 0. Obviously, strcmp did the pointers comparison prior
596 : * to actually accessing the pointer contents. We are still consistent
597 : * in this case for the comparison return although we also spit out a
598 : * C11 violation message in the console to warn that they pass null pointers
599 : * for both s1 and s2. The other problem is strcmp does not provide s1max,
600 : * we use CLIB_STRING_MACRO_MAX and hopefully, s1 is null terminated.
601 : * If not, we may be accessing memory beyonf what is intended.
602 : * Applications are encouraged to use the cool C11 strcmp_s API to get the
603 : * maximum benefit out of it.
604 : */
605 : #define clib_strcmp(s1,s2) \
606 : ({ int __indicator = 0; \
607 : strcmp_s_inline (s1, CLIB_STRING_MACRO_MAX, s2, &__indicator); \
608 : __indicator; \
609 : })
610 :
611 : errno_t strcmp_s (const char *s1, rsize_t s1max, const char *s2,
612 : int *indicator);
613 :
614 : always_inline errno_t
615 115781 : strcmp_s_inline (const char *s1, rsize_t s1max, const char *s2,
616 : int *indicator)
617 : {
618 : u8 bad;
619 :
620 231562 : bad = (indicator == 0) + (s1 == 0) + (s2 == 0) + (s1max == 0) +
621 115781 : (s1 && s1max && s1[clib_strnlen (s1, s1max)] != '\0');
622 :
623 115781 : if (PREDICT_FALSE (bad != 0))
624 : {
625 3 : if (indicator == NULL)
626 1 : clib_c11_violation ("indicator NULL");
627 3 : if (s1 == NULL)
628 2 : clib_c11_violation ("s1 NULL");
629 3 : if (s2 == NULL)
630 2 : clib_c11_violation ("s2 NULL");
631 3 : if (s1max == 0)
632 1 : clib_c11_violation ("s1max 0");
633 3 : if (s1 && s1max && s1[clib_strnlen (s1, s1max)] != '\0')
634 1 : clib_c11_violation ("s1 unterminated");
635 3 : return EINVAL;
636 : }
637 :
638 115778 : *indicator = strcmp (s1, s2);
639 115778 : return EOK;
640 : }
641 :
642 : /*
643 : * This macro is to provide smooth mapping from strncmp to strncmp_s.
644 : * strncmp has fewer parameters and fewer returns than strncmp_s. That said,
645 : * this macro is somewhat a crutch. When we get err != EOK from strncmp_s,
646 : * we return 0 and spit out a message in the console because there is no
647 : * means to return the error to the strncmp caller.
648 : * This condition happens when s1 or s2 is null. In the extant strncmp call,
649 : * they would end up crashing if one of them is null. So the new behavior is
650 : * no crash, but error is displayed in the console which is more
651 : * user friendly. If s1 and s2 are null, strncmp returns 0. Obviously,
652 : * strncmp did the pointers comparison prior to actually accessing the
653 : * pointer contents. We are still consistent in this case for the comparison
654 : * return although we also spit out a C11 violation message in the console to
655 : * warn that they pass null pointers for both s1 and s2.
656 : * Applications are encouraged to use the cool C11 strncmp_s API to get the
657 : * maximum benefit out of it.
658 : */
659 : #define clib_strncmp(s1,s2,n) \
660 : ({ int __indicator = 0; \
661 : strncmp_s_inline (s1, CLIB_STRING_MACRO_MAX, s2, n, &__indicator); \
662 : __indicator; \
663 : })
664 :
665 : errno_t strncmp_s (const char *s1, rsize_t s1max, const char *s2, rsize_t n,
666 : int *indicator);
667 :
668 : always_inline errno_t
669 15 : strncmp_s_inline (const char *s1, rsize_t s1max, const char *s2, rsize_t n,
670 : int *indicator)
671 : {
672 : u8 bad;
673 15 : u8 s1_greater_s1max = (s1 && s1max && n > clib_strnlen (s1, s1max));
674 :
675 15 : if (PREDICT_FALSE (s1_greater_s1max && indicator))
676 : {
677 : /*
678 : * strcmp allows n > s1max. If indicator is non null, we can still
679 : * do the compare without any harm and return EINVAL as well as the
680 : * result in indicator.
681 : */
682 2 : clib_c11_violation ("n exceeds s1 length");
683 2 : *indicator = strncmp (s1, s2, n);
684 2 : return EINVAL;
685 : }
686 :
687 26 : bad = (s1 == 0) + (s2 == 0) + (indicator == 0) + (s1max == 0) +
688 13 : (s1 && s1max && s1[clib_strnlen (s1, s1max)] != '\0') + s1_greater_s1max;
689 :
690 13 : if (PREDICT_FALSE (bad != 0))
691 : {
692 3 : if (indicator == NULL)
693 1 : clib_c11_violation ("indicator NULL");
694 3 : if (s1 == NULL)
695 2 : clib_c11_violation ("s1 NULL");
696 3 : if (s2 == NULL)
697 2 : clib_c11_violation ("s2 NULL");
698 3 : if (s1max == 0)
699 1 : clib_c11_violation ("s1max 0");
700 3 : if (s1 && s1max && s1[clib_strnlen (s1, s1max)] != '\0')
701 1 : clib_c11_violation ("s1 unterminated");
702 3 : if (s1_greater_s1max)
703 0 : clib_c11_violation ("n exceeds s1 length");
704 3 : return EINVAL;
705 : }
706 :
707 10 : *indicator = strncmp (s1, s2, n);
708 10 : return EOK;
709 : }
710 :
711 : errno_t strcpy_s (char *__restrict__ dest, rsize_t dmax,
712 : const char *__restrict__ src);
713 :
714 : always_inline errno_t
715 17 : strcpy_s_inline (char *__restrict__ dest, rsize_t dmax,
716 : const char *__restrict__ src)
717 : {
718 : u8 bad;
719 : uword low, hi;
720 : size_t n;
721 :
722 17 : bad = (dest == 0) + (dmax == 0) + (src == 0);
723 17 : if (PREDICT_FALSE (bad != 0))
724 : {
725 1 : if (dest == 0)
726 1 : clib_c11_violation ("dest NULL");
727 1 : if (src == 0)
728 1 : clib_c11_violation ("src NULL");
729 1 : if (dmax == 0)
730 1 : clib_c11_violation ("dmax 0");
731 1 : return EINVAL;
732 : }
733 :
734 16 : n = clib_strnlen (src, dmax);
735 16 : if (PREDICT_FALSE (n >= dmax))
736 : {
737 1 : clib_c11_violation ("not enough space for dest");
738 1 : return (EINVAL);
739 : }
740 : /* Not actually trying to copy anything is OK */
741 15 : if (PREDICT_FALSE (n == 0))
742 0 : return EOK;
743 :
744 : /* Check for src/dst overlap, which is not allowed */
745 15 : low = (uword) (src < dest ? src : dest);
746 15 : hi = (uword) (src < dest ? dest : src);
747 :
748 15 : if (PREDICT_FALSE (low + (n - 1) >= hi))
749 : {
750 1 : clib_c11_violation ("src/dest overlap");
751 1 : return EINVAL;
752 : }
753 :
754 14 : clib_memcpy_fast (dest, src, n);
755 14 : dest[n] = '\0';
756 14 : return EOK;
757 : }
758 :
759 : /*
760 : * This macro is provided for smooth migration from strncpy. It is not perfect
761 : * because we don't know the size of the destination buffer to pass to
762 : * strncpy_s. We improvise dmax with CLIB_STRING_MACRO_MAX.
763 : * Applications are encouraged to move to the C11 strncpy_s API and provide
764 : * the correct dmax for better error checking.
765 : */
766 : #define clib_strncpy(d,s,n) strncpy_s_inline(d,CLIB_STRING_MACRO_MAX,s,n)
767 :
768 : errno_t
769 : strncpy_s (char *__restrict__ dest, rsize_t dmax,
770 : const char *__restrict__ src, rsize_t n);
771 :
772 : always_inline errno_t
773 1046390 : strncpy_s_inline (char *__restrict__ dest, rsize_t dmax,
774 : const char *__restrict__ src, rsize_t n)
775 : {
776 : u8 bad;
777 : uword low, hi;
778 : rsize_t m;
779 1046390 : errno_t status = EOK;
780 :
781 1046390 : bad = (dest == 0) + (dmax == 0) + (src == 0) + (n == 0);
782 1046390 : if (PREDICT_FALSE (bad != 0))
783 : {
784 : /* Not actually trying to copy anything is OK */
785 4 : if (n == 0)
786 2 : return EOK;
787 2 : if (dest == 0)
788 2 : clib_c11_violation ("dest NULL");
789 2 : if (src == 0)
790 2 : clib_c11_violation ("src NULL");
791 2 : if (dmax == 0)
792 1 : clib_c11_violation ("dmax 0");
793 2 : return EINVAL;
794 : }
795 :
796 1046388 : if (PREDICT_FALSE (n >= dmax))
797 : {
798 : /* Relax and use strnlen of src */
799 1 : clib_c11_violation ("n >= dmax");
800 1 : m = clib_strnlen (src, dmax);
801 1 : if (m >= dmax)
802 : {
803 : /* Truncate, adjust copy length to fit dest */
804 1 : m = dmax - 1;
805 1 : status = EOVERFLOW;
806 : }
807 : }
808 : else
809 : /* cap the copy to strlen(src) in case n > strlen(src) */
810 1046388 : m = clib_strnlen (src, n);
811 :
812 : /* Check for src/dst overlap, which is not allowed */
813 1046388 : low = (uword) (src < dest ? src : dest);
814 1046388 : hi = (uword) (src < dest ? dest : src);
815 :
816 : /*
817 : * This check may fail innocently if src + dmax >= dst, but
818 : * src + strlen(src) < dst. If it fails, check more carefully before
819 : * blowing the whistle.
820 : */
821 1046388 : if (PREDICT_FALSE (low + (m - 1) >= hi))
822 : {
823 2 : m = clib_strnlen (src, m);
824 :
825 2 : if (low + (m - 1) >= hi)
826 : {
827 2 : clib_c11_violation ("src/dest overlap");
828 2 : return EINVAL;
829 : }
830 : }
831 :
832 1046387 : clib_memcpy_fast (dest, src, m);
833 1046387 : dest[m] = '\0';
834 1046387 : return status;
835 : }
836 :
837 : errno_t strcat_s (char *__restrict__ dest, rsize_t dmax,
838 : const char *__restrict__ src);
839 :
840 : always_inline errno_t
841 5 : strcat_s_inline (char *__restrict__ dest, rsize_t dmax,
842 : const char *__restrict__ src)
843 : {
844 : u8 bad;
845 : uword low, hi;
846 : size_t m, n, dest_size;
847 :
848 5 : bad = (dest == 0) + (dmax == 0) + (src == 0);
849 5 : if (PREDICT_FALSE (bad != 0))
850 : {
851 1 : if (dest == 0)
852 1 : clib_c11_violation ("dest NULL");
853 1 : if (src == 0)
854 1 : clib_c11_violation ("src NULL");
855 1 : if (dmax == 0)
856 1 : clib_c11_violation ("dmax 0");
857 1 : return EINVAL;
858 : }
859 :
860 4 : dest_size = clib_strnlen (dest, dmax);
861 4 : m = dmax - dest_size;
862 4 : n = clib_strnlen (src, m);
863 4 : if (PREDICT_FALSE (n >= m))
864 : {
865 1 : clib_c11_violation ("not enough space for dest");
866 1 : return EINVAL;
867 : }
868 :
869 : /* Not actually trying to concatenate anything is OK */
870 3 : if (PREDICT_FALSE (n == 0))
871 1 : return EOK;
872 :
873 : /* Check for src/dst overlap, which is not allowed */
874 2 : low = (uword) (src < dest ? src : dest);
875 2 : hi = (uword) (src < dest ? dest : src);
876 :
877 2 : if (PREDICT_FALSE (low + (n - 1) >= hi))
878 : {
879 1 : clib_c11_violation ("src/dest overlap");
880 1 : return EINVAL;
881 : }
882 :
883 1 : clib_memcpy_fast (dest + dest_size, src, n);
884 1 : dest[dest_size + n] = '\0';
885 1 : return EOK;
886 : }
887 :
888 : errno_t strncat_s (char *__restrict__ dest, rsize_t dmax,
889 : const char *__restrict__ src, rsize_t n);
890 :
891 : always_inline errno_t
892 9 : strncat_s_inline (char *__restrict__ dest, rsize_t dmax,
893 : const char *__restrict__ src, rsize_t n)
894 : {
895 : u8 bad;
896 : uword low, hi;
897 : size_t m, dest_size, allowed_size;
898 9 : errno_t status = EOK;
899 :
900 9 : bad = (dest == 0) + (src == 0) + (dmax == 0) + (n == 0);
901 9 : if (PREDICT_FALSE (bad != 0))
902 : {
903 : /* Not actually trying to concatenate anything is OK */
904 2 : if (n == 0)
905 1 : return EOK;
906 1 : if (dest == 0)
907 1 : clib_c11_violation ("dest NULL");
908 1 : if (src == 0)
909 1 : clib_c11_violation ("src NULL");
910 1 : if (dmax == 0)
911 1 : clib_c11_violation ("dmax 0");
912 1 : return EINVAL;
913 : }
914 :
915 : /* Check for src/dst overlap, which is not allowed */
916 7 : low = (uword) (src < dest ? src : dest);
917 7 : hi = (uword) (src < dest ? dest : src);
918 :
919 7 : if (PREDICT_FALSE (low + (n - 1) >= hi))
920 : {
921 1 : clib_c11_violation ("src/dest overlap");
922 1 : return EINVAL;
923 : }
924 :
925 6 : dest_size = clib_strnlen (dest, dmax);
926 6 : allowed_size = dmax - dest_size;
927 :
928 6 : if (PREDICT_FALSE (allowed_size == 0))
929 : {
930 1 : clib_c11_violation ("no space left in dest");
931 1 : return (EINVAL);
932 : }
933 :
934 5 : if (PREDICT_FALSE (n >= allowed_size))
935 : {
936 : /*
937 : * unlike strcat_s, strncat_s will do the concatenation anyway when
938 : * there is not enough space in dest. But it will do the truncation and
939 : * null terminate dest
940 : */
941 1 : m = clib_strnlen (src, allowed_size);
942 1 : if (m >= allowed_size)
943 : {
944 1 : m = allowed_size - 1;
945 1 : status = EOVERFLOW;
946 : }
947 : }
948 : else
949 4 : m = clib_strnlen (src, n);
950 :
951 5 : clib_memcpy_fast (dest + dest_size, src, m);
952 5 : dest[dest_size + m] = '\0';
953 5 : return status;
954 : }
955 :
956 : /*
957 : * This macro is to provide smooth mapping from strtok_r to strtok_s.
958 : * To map strtok to this macro, the caller would have to supply an additional
959 : * argument. strtokr_s requires s1max which the unsafe API does not have. So
960 : * we have to improvise it with CLIB_STRING_MACRO_MAX. Unlike strtok_s,
961 : * this macro cannot catch unterminated s1 and s2.
962 : * Applications are encouraged to use the cool C11 strtok_s API to avoid
963 : * these problems.
964 : */
965 : #define clib_strtok(s1,s2,p) \
966 : ({ rsize_t __s1max = CLIB_STRING_MACRO_MAX; \
967 : strtok_s_inline (s1, &__s1max, s2, p); \
968 : })
969 :
970 : char *strtok_s (char *__restrict__ s1, rsize_t * __restrict__ s1max,
971 : const char *__restrict__ s2, char **__restrict__ ptr);
972 :
973 : always_inline char *
974 20 : strtok_s_inline (char *__restrict__ s1, rsize_t * __restrict__ s1max,
975 : const char *__restrict__ s2, char **__restrict__ ptr)
976 : {
977 : #define STRTOK_DELIM_MAX_LEN 16
978 : u8 bad;
979 : const char *pt;
980 : char *ptoken;
981 : uword dlen, slen;
982 :
983 40 : bad = (s1max == 0) + (s2 == 0) + (ptr == 0) +
984 20 : ((s1 == 0) && ptr && (*ptr == 0));
985 20 : if (PREDICT_FALSE (bad != 0))
986 : {
987 2 : if (s2 == NULL)
988 2 : clib_c11_violation ("s2 NULL");
989 2 : if (s1max == NULL)
990 2 : clib_c11_violation ("s1max is NULL");
991 2 : if (ptr == NULL)
992 1 : clib_c11_violation ("ptr is NULL");
993 : /* s1 == 0 and *ptr == null is no good */
994 2 : if ((s1 == 0) && ptr && (*ptr == 0))
995 1 : clib_c11_violation ("s1 and ptr contents are NULL");
996 2 : return 0;
997 : }
998 :
999 18 : if (s1 == 0)
1000 12 : s1 = *ptr;
1001 :
1002 : /*
1003 : * scan s1 for a delimiter
1004 : */
1005 18 : dlen = *s1max;
1006 18 : ptoken = 0;
1007 33 : while (*s1 != '\0' && !ptoken)
1008 : {
1009 16 : if (PREDICT_FALSE (dlen == 0))
1010 : {
1011 0 : *ptr = 0;
1012 0 : clib_c11_violation ("s1 unterminated");
1013 0 : return 0;
1014 : }
1015 :
1016 : /*
1017 : * must scan the entire delimiter list
1018 : * ISO should have included a delimiter string limit!!
1019 : */
1020 16 : slen = STRTOK_DELIM_MAX_LEN;
1021 16 : pt = s2;
1022 47 : while (*pt != '\0')
1023 : {
1024 32 : if (PREDICT_FALSE (slen == 0))
1025 : {
1026 1 : *ptr = 0;
1027 1 : clib_c11_violation ("s2 unterminated");
1028 1 : return 0;
1029 : }
1030 31 : slen--;
1031 31 : if (*s1 == *pt)
1032 : {
1033 0 : ptoken = 0;
1034 0 : break;
1035 : }
1036 : else
1037 : {
1038 31 : pt++;
1039 31 : ptoken = s1;
1040 : }
1041 : }
1042 15 : s1++;
1043 15 : dlen--;
1044 : }
1045 :
1046 : /*
1047 : * if the beginning of a token was not found, then no
1048 : * need to continue the scan.
1049 : */
1050 17 : if (ptoken == 0)
1051 : {
1052 2 : *s1max = dlen;
1053 2 : return (ptoken);
1054 : }
1055 :
1056 : /*
1057 : * Now we need to locate the end of the token
1058 : */
1059 120 : while (*s1 != '\0')
1060 : {
1061 116 : if (dlen == 0)
1062 : {
1063 1 : *ptr = 0;
1064 1 : clib_c11_violation ("s1 unterminated");
1065 1 : return 0;
1066 : }
1067 :
1068 115 : slen = STRTOK_DELIM_MAX_LEN;
1069 115 : pt = s2;
1070 220 : while (*pt != '\0')
1071 : {
1072 115 : if (slen == 0)
1073 : {
1074 0 : *ptr = 0;
1075 0 : clib_c11_violation ("s2 unterminated");
1076 0 : return 0;
1077 : }
1078 115 : slen--;
1079 115 : if (*s1 == *pt)
1080 : {
1081 : /*
1082 : * found a delimiter, set to null
1083 : * and return context ptr to next char
1084 : */
1085 10 : *s1 = '\0';
1086 10 : *ptr = (s1 + 1); /* return pointer for next scan */
1087 10 : *s1max = dlen - 1; /* account for the nulled delimiter */
1088 10 : return (ptoken);
1089 : }
1090 : else
1091 : {
1092 : /*
1093 : * simply scanning through the delimiter string
1094 : */
1095 105 : pt++;
1096 : }
1097 : }
1098 105 : s1++;
1099 105 : dlen--;
1100 : }
1101 :
1102 4 : *ptr = s1;
1103 4 : *s1max = dlen;
1104 4 : return (ptoken);
1105 : }
1106 :
1107 : errno_t strstr_s (char *s1, rsize_t s1max, const char *s2, rsize_t s2max,
1108 : char **substring);
1109 :
1110 : always_inline errno_t
1111 4 : strstr_s_inline (char *s1, rsize_t s1max, const char *s2, rsize_t s2max,
1112 : char **substring)
1113 : {
1114 : u8 bad;
1115 : size_t s1_size, s2_size;
1116 :
1117 4 : bad =
1118 8 : (s1 == 0) + (s2 == 0) + (substring == 0) + (s1max == 0) + (s2max == 0) +
1119 4 : (s1 && s1max && (s1[clib_strnlen (s1, s1max)] != '\0')) +
1120 4 : (s2 && s2max && (s2[clib_strnlen (s2, s2max)] != '\0'));
1121 4 : if (PREDICT_FALSE (bad != 0))
1122 : {
1123 2 : if (s1 == 0)
1124 1 : clib_c11_violation ("s1 NULL");
1125 2 : if (s2 == 0)
1126 1 : clib_c11_violation ("s2 NULL");
1127 2 : if (s1max == 0)
1128 1 : clib_c11_violation ("s1max 0");
1129 2 : if (s2max == 0)
1130 1 : clib_c11_violation ("s2max 0");
1131 2 : if (substring == 0)
1132 1 : clib_c11_violation ("substring NULL");
1133 2 : if (s1 && s1max && (s1[clib_strnlen (s1, s1max)] != '\0'))
1134 1 : clib_c11_violation ("s1 unterminated");
1135 2 : if (s2 && s2max && (s2[clib_strnlen (s2, s2max)] != '\0'))
1136 1 : clib_c11_violation ("s2 unterminated");
1137 2 : return EINVAL;
1138 : }
1139 :
1140 : /*
1141 : * s2 points to a string with zero length, or s2 equals s1, return s1
1142 : */
1143 2 : if (PREDICT_FALSE (*s2 == '\0' || s1 == s2))
1144 : {
1145 0 : *substring = s1;
1146 0 : return EOK;
1147 : }
1148 :
1149 : /*
1150 : * s2_size > s1_size, it won't find match.
1151 : */
1152 2 : s1_size = clib_strnlen (s1, s1max);
1153 2 : s2_size = clib_strnlen (s2, s2max);
1154 2 : if (PREDICT_FALSE (s2_size > s1_size))
1155 0 : return ESRCH;
1156 :
1157 2 : *substring = strstr (s1, s2);
1158 2 : if (*substring == 0)
1159 1 : return ESRCH;
1160 :
1161 1 : return EOK;
1162 : }
1163 :
1164 : #endif /* included_clib_string_h */
1165 :
1166 : /*
1167 : * fd.io coding-style-patch-verification: ON
1168 : *
1169 : * Local Variables:
1170 : * eval: (c-set-style "gnu")
1171 : * End:
1172 : */
|