Line data Source code
1 : /*
2 : *------------------------------------------------------------------
3 : * Copyright (c) 2019 Cisco and/or its affiliates.
4 : * Licensed under the Apache License, Version 2.0 (the "License");
5 : * you may not use this file except in compliance with the License.
6 : * You may obtain a copy of the License at:
7 : *
8 : * http://www.apache.org/licenses/LICENSE-2.0
9 : *
10 : * Unless required by applicable law or agreed to in writing, software
11 : * distributed under the License is distributed on an "AS IS" BASIS,
12 : * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 : * See the License for the specific language governing permissions and
14 : * limitations under the License.
15 : *------------------------------------------------------------------
16 : */
17 :
18 : /*
19 : *------------------------------------------------------------------
20 : * Copyright(c) 2018, Intel Corporation All rights reserved.
21 : *
22 : * Redistribution and use in source and binary forms, with or without
23 : * modification, are permitted provided that the following conditions
24 : * are met:
25 : * * Redistributions of source code must retain the above copyright
26 : * notice, this list of conditions and the following disclaimer.
27 : * * Redistributions in binary form must reproduce the above copyright
28 : * notice, this list of conditions and the following disclaimer in
29 : * the documentation and/or other materials provided with the
30 : * distribution.
31 : * * Neither the name of Intel Corporation nor the names of its
32 : * contributors may be used to endorse or promote products derived
33 : * from this software without specific prior written permission.
34 : *
35 : * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
36 : * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
37 : * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
38 : * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
39 : * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 : * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
41 : * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES * LOSS OF USE,
42 : * DATA, OR PROFITS * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
43 : * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
44 : * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
45 : * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
46 : *------------------------------------------------------------------
47 : */
48 :
49 : /*
50 : * Based on work by: Shay Gueron, Michael E. Kounavis, Erdinc Ozturk,
51 : * Vinodh Gopal, James Guilford, Tomasz Kantecki
52 : *
53 : * References:
54 : * [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on
55 : * Intel Architecture Processors. August, 2010
56 : * [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on
57 : * Intel Architecture Processors. October, 2012.
58 : * [3] intel-ipsec-mb library, https://github.com/01org/intel-ipsec-mb.git
59 : *
60 : * Definitions:
61 : * GF Galois Extension Field GF(2^128) - finite field where elements are
62 : * represented as polynomials with coefficients in GF(2) with the
63 : * highest degree of 127. Polynomials are represented as 128-bit binary
64 : * numbers where each bit represents one coefficient.
65 : * e.g. polynomial x^5 + x^3 + x + 1 is represented in binary 101011.
66 : * H hash key (128 bit)
67 : * POLY irreducible polynomial x^127 + x^7 + x^2 + x + 1
68 : * RPOLY irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1
69 : * + addition in GF, which equals to XOR operation
70 : * * multiplication in GF
71 : *
72 : * GF multiplication consists of 2 steps:
73 : * - carry-less multiplication of two 128-bit operands into 256-bit result
74 : * - reduction of 256-bit result into 128-bit with modulo POLY
75 : *
76 : * GHash is calculated on 128-bit blocks of data according to the following
77 : * formula:
78 : * GH = (GH + data) * hash_key
79 : *
80 : * To avoid bit-reflection of data, this code uses GF multipication
81 : * with reversed polynomial:
82 : * a * b * x^-127 mod RPOLY
83 : *
84 : * To improve computation speed table Hi is precomputed with powers of H',
85 : * where H' is calculated as H<<1 mod RPOLY.
86 : * This allows us to improve performance by deferring reduction. For example
87 : * to caclulate ghash of 4 128-bit blocks of data (b0, b1, b2, b3), we can do:
88 : *
89 : * u8x16 Hi[4];
90 : * ghash_precompute (H, Hi, 4);
91 : *
92 : * ghash_ctx_t _gd, *gd = &_gd;
93 : * ghash_mul_first (gd, GH ^ b0, Hi[3]);
94 : * ghash_mul_next (gd, b1, Hi[2]);
95 : * ghash_mul_next (gd, b2, Hi[1]);
96 : * ghash_mul_next (gd, b3, Hi[0]);
97 : * ghash_reduce (gd);
98 : * ghash_reduce2 (gd);
99 : * GH = ghash_final (gd);
100 : *
101 : * Reduction step is split into 3 functions so it can be better interleaved
102 : * with other code, (i.e. with AES computation).
103 : */
104 :
105 : #ifndef __ghash_h__
106 : #define __ghash_h__
107 :
108 : static_always_inline u8x16
109 16464800 : gmul_lo_lo (u8x16 a, u8x16 b)
110 : {
111 : #if defined (__PCLMUL__)
112 16464800 : return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x00);
113 : #elif defined (__ARM_FEATURE_CRYPTO)
114 : return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a),
115 : (poly64_t) vget_low_p64 ((poly64x2_t) b));
116 : #endif
117 : }
118 :
119 : static_always_inline u8x16
120 16536100 : gmul_hi_lo (u8x16 a, u8x16 b)
121 : {
122 : #if defined (__PCLMUL__)
123 16536100 : return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x01);
124 : #elif defined (__ARM_FEATURE_CRYPTO)
125 : return (u8x16) vmull_p64 ((poly64_t) vget_high_p64 ((poly64x2_t) a),
126 : (poly64_t) vget_low_p64 ((poly64x2_t) b));
127 : #endif
128 : }
129 :
130 : static_always_inline u8x16
131 16464800 : gmul_lo_hi (u8x16 a, u8x16 b)
132 : {
133 : #if defined (__PCLMUL__)
134 16464800 : return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x10);
135 : #elif defined (__ARM_FEATURE_CRYPTO)
136 : return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a),
137 : (poly64_t) vget_high_p64 ((poly64x2_t) b));
138 : #endif
139 : }
140 :
141 : static_always_inline u8x16
142 11544200 : gmul_hi_hi (u8x16 a, u8x16 b)
143 : {
144 : #if defined (__PCLMUL__)
145 11544200 : return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x11);
146 : #elif defined (__ARM_FEATURE_CRYPTO)
147 : return (u8x16) vmull_high_p64 ((poly64x2_t) a, (poly64x2_t) b);
148 : #endif
149 : }
150 :
151 : typedef struct
152 : {
153 : u8x16 mid, hi, lo, tmp_lo, tmp_hi;
154 : u8x32 hi2, lo2, mid2, tmp_lo2, tmp_hi2;
155 : u8x64 hi4, lo4, mid4, tmp_lo4, tmp_hi4;
156 : int pending;
157 : } ghash_ctx_t;
158 :
159 : static const u8x16 ghash_poly = {
160 : 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
161 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2
162 : };
163 :
164 : static const u8x16 ghash_poly2 = {
165 : 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
166 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2
167 : };
168 :
169 : static_always_inline void
170 4920670 : ghash_mul_first (ghash_ctx_t *gd, u8x16 a, u8x16 b)
171 : {
172 : /* a1 * b1 */
173 4920670 : gd->hi = gmul_hi_hi (a, b);
174 : /* a0 * b0 */
175 4920670 : gd->lo = gmul_lo_lo (a, b);
176 : /* a0 * b1 ^ a1 * b0 */
177 4920670 : gd->mid = gmul_hi_lo (a, b) ^ gmul_lo_hi (a, b);
178 :
179 : /* set gd->pending to 0 so next invocation of ghash_mul_next(...) knows that
180 : there is no pending data in tmp_lo and tmp_hi */
181 4920670 : gd->pending = 0;
182 4920670 : }
183 :
184 : static_always_inline void
185 6623480 : ghash_mul_next (ghash_ctx_t *gd, u8x16 a, u8x16 b)
186 : {
187 : /* a1 * b1 */
188 6623480 : u8x16 hi = gmul_hi_hi (a, b);
189 : /* a0 * b0 */
190 6623480 : u8x16 lo = gmul_lo_lo (a, b);
191 :
192 : /* this branch will be optimized out by the compiler, and it allows us to
193 : reduce number of XOR operations by using ternary logic */
194 6623480 : if (gd->pending)
195 : {
196 : /* there is peding data from previous invocation so we can XOR */
197 2797390 : gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, hi);
198 2797390 : gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, lo);
199 2797390 : gd->pending = 0;
200 : }
201 : else
202 : {
203 : /* there is no peding data from previous invocation so we postpone XOR */
204 3826090 : gd->tmp_hi = hi;
205 3826090 : gd->tmp_lo = lo;
206 3826090 : gd->pending = 1;
207 : }
208 :
209 : /* gd->mid ^= a0 * b1 ^ a1 * b0 */
210 6623480 : gd->mid = u8x16_xor3 (gd->mid, gmul_hi_lo (a, b), gmul_lo_hi (a, b));
211 6623480 : }
212 :
213 : static_always_inline void
214 4991910 : ghash_reduce (ghash_ctx_t *gd)
215 : {
216 : u8x16 r;
217 :
218 : /* Final combination:
219 : gd->lo ^= gd->mid << 64
220 : gd->hi ^= gd->mid >> 64 */
221 4991910 : u8x16 midl = u8x16_word_shift_left (gd->mid, 8);
222 4991910 : u8x16 midr = u8x16_word_shift_right (gd->mid, 8);
223 :
224 4991910 : if (gd->pending)
225 : {
226 1028840 : gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, midl);
227 1028840 : gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, midr);
228 : }
229 : else
230 : {
231 3963070 : gd->lo ^= midl;
232 3963070 : gd->hi ^= midr;
233 : }
234 4991910 : r = gmul_hi_lo (ghash_poly2, gd->lo);
235 4991910 : gd->lo ^= u8x16_word_shift_left (r, 8);
236 4991910 : }
237 :
238 : static_always_inline void
239 4920670 : ghash_reduce2 (ghash_ctx_t *gd)
240 : {
241 4920670 : gd->tmp_lo = gmul_lo_lo (ghash_poly2, gd->lo);
242 4920670 : gd->tmp_hi = gmul_lo_hi (ghash_poly2, gd->lo);
243 4920670 : }
244 :
245 : static_always_inline u8x16
246 4920670 : ghash_final (ghash_ctx_t *gd)
247 : {
248 9841340 : return u8x16_xor3 (gd->hi, u8x16_word_shift_right (gd->tmp_lo, 4),
249 4920670 : u8x16_word_shift_left (gd->tmp_hi, 4));
250 : }
251 :
252 : static_always_inline u8x16
253 3610390 : ghash_mul (u8x16 a, u8x16 b)
254 : {
255 3610390 : ghash_ctx_t _gd, *gd = &_gd;
256 3610390 : ghash_mul_first (gd, a, b);
257 3610390 : ghash_reduce (gd);
258 3610390 : ghash_reduce2 (gd);
259 3610390 : return ghash_final (gd);
260 : }
261 :
262 : #if defined(__VPCLMULQDQ__) && defined(__AVX512F__)
263 :
264 : static const u8x64 ghash4_poly2 = {
265 : 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
266 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
267 : 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
268 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
269 : 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
270 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
271 : 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
272 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
273 : };
274 :
275 : static_always_inline u8x64
276 0 : gmul4_lo_lo (u8x64 a, u8x64 b)
277 : {
278 0 : return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x00);
279 : }
280 :
281 : static_always_inline u8x64
282 0 : gmul4_hi_lo (u8x64 a, u8x64 b)
283 : {
284 0 : return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x01);
285 : }
286 :
287 : static_always_inline u8x64
288 0 : gmul4_lo_hi (u8x64 a, u8x64 b)
289 : {
290 0 : return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x10);
291 : }
292 :
293 : static_always_inline u8x64
294 0 : gmul4_hi_hi (u8x64 a, u8x64 b)
295 : {
296 0 : return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x11);
297 : }
298 :
299 : static_always_inline void
300 0 : ghash4_mul_first (ghash_ctx_t *gd, u8x64 a, u8x64 b)
301 : {
302 0 : gd->hi4 = gmul4_hi_hi (a, b);
303 0 : gd->lo4 = gmul4_lo_lo (a, b);
304 0 : gd->mid4 = gmul4_hi_lo (a, b) ^ gmul4_lo_hi (a, b);
305 0 : gd->pending = 0;
306 0 : }
307 :
308 : static_always_inline void
309 0 : ghash4_mul_next (ghash_ctx_t *gd, u8x64 a, u8x64 b)
310 : {
311 0 : u8x64 hi = gmul4_hi_hi (a, b);
312 0 : u8x64 lo = gmul4_lo_lo (a, b);
313 :
314 0 : if (gd->pending)
315 : {
316 : /* there is peding data from previous invocation so we can XOR */
317 0 : gd->hi4 = u8x64_xor3 (gd->hi4, gd->tmp_hi4, hi);
318 0 : gd->lo4 = u8x64_xor3 (gd->lo4, gd->tmp_lo4, lo);
319 0 : gd->pending = 0;
320 : }
321 : else
322 : {
323 : /* there is no peding data from previous invocation so we postpone XOR */
324 0 : gd->tmp_hi4 = hi;
325 0 : gd->tmp_lo4 = lo;
326 0 : gd->pending = 1;
327 : }
328 0 : gd->mid4 = u8x64_xor3 (gd->mid4, gmul4_hi_lo (a, b), gmul4_lo_hi (a, b));
329 0 : }
330 :
331 : static_always_inline void
332 0 : ghash4_reduce (ghash_ctx_t *gd)
333 : {
334 : u8x64 r;
335 :
336 : /* Final combination:
337 : gd->lo4 ^= gd->mid4 << 64
338 : gd->hi4 ^= gd->mid4 >> 64 */
339 :
340 0 : u8x64 midl = u8x64_word_shift_left (gd->mid4, 8);
341 0 : u8x64 midr = u8x64_word_shift_right (gd->mid4, 8);
342 :
343 0 : if (gd->pending)
344 : {
345 0 : gd->lo4 = u8x64_xor3 (gd->lo4, gd->tmp_lo4, midl);
346 0 : gd->hi4 = u8x64_xor3 (gd->hi4, gd->tmp_hi4, midr);
347 : }
348 : else
349 : {
350 0 : gd->lo4 ^= midl;
351 0 : gd->hi4 ^= midr;
352 : }
353 :
354 0 : r = gmul4_hi_lo (ghash4_poly2, gd->lo4);
355 0 : gd->lo4 ^= u8x64_word_shift_left (r, 8);
356 0 : }
357 :
358 : static_always_inline void
359 0 : ghash4_reduce2 (ghash_ctx_t *gd)
360 : {
361 0 : gd->tmp_lo4 = gmul4_lo_lo (ghash4_poly2, gd->lo4);
362 0 : gd->tmp_hi4 = gmul4_lo_hi (ghash4_poly2, gd->lo4);
363 0 : }
364 :
365 : static_always_inline u8x16
366 0 : ghash4_final (ghash_ctx_t *gd)
367 : {
368 : u8x64 r;
369 : u8x32 t;
370 :
371 0 : r = u8x64_xor3 (gd->hi4, u8x64_word_shift_right (gd->tmp_lo4, 4),
372 0 : u8x64_word_shift_left (gd->tmp_hi4, 4));
373 :
374 : /* horizontal XOR of 4 128-bit lanes */
375 0 : t = u8x64_extract_lo (r) ^ u8x64_extract_hi (r);
376 0 : return u8x32_extract_hi (t) ^ u8x32_extract_lo (t);
377 : }
378 : #endif
379 :
380 : #if defined(__VPCLMULQDQ__)
381 :
382 : static const u8x32 ghash2_poly2 = {
383 : 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
384 : 0x00, 0x00, 0x00, 0x00, 0xc2, 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00,
385 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
386 : };
387 :
388 : static_always_inline u8x32
389 : gmul2_lo_lo (u8x32 a, u8x32 b)
390 : {
391 : return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x00);
392 : }
393 :
394 : static_always_inline u8x32
395 : gmul2_hi_lo (u8x32 a, u8x32 b)
396 : {
397 : return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x01);
398 : }
399 :
400 : static_always_inline u8x32
401 : gmul2_lo_hi (u8x32 a, u8x32 b)
402 : {
403 : return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x10);
404 : }
405 :
406 : static_always_inline u8x32
407 : gmul2_hi_hi (u8x32 a, u8x32 b)
408 : {
409 : return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x11);
410 : }
411 :
412 : static_always_inline void
413 : ghash2_mul_first (ghash_ctx_t *gd, u8x32 a, u8x32 b)
414 : {
415 : gd->hi2 = gmul2_hi_hi (a, b);
416 : gd->lo2 = gmul2_lo_lo (a, b);
417 : gd->mid2 = gmul2_hi_lo (a, b) ^ gmul2_lo_hi (a, b);
418 : gd->pending = 0;
419 : }
420 :
421 : static_always_inline void
422 : ghash2_mul_next (ghash_ctx_t *gd, u8x32 a, u8x32 b)
423 : {
424 : u8x32 hi = gmul2_hi_hi (a, b);
425 : u8x32 lo = gmul2_lo_lo (a, b);
426 :
427 : if (gd->pending)
428 : {
429 : /* there is peding data from previous invocation so we can XOR */
430 : gd->hi2 = u8x32_xor3 (gd->hi2, gd->tmp_hi2, hi);
431 : gd->lo2 = u8x32_xor3 (gd->lo2, gd->tmp_lo2, lo);
432 : gd->pending = 0;
433 : }
434 : else
435 : {
436 : /* there is no peding data from previous invocation so we postpone XOR */
437 : gd->tmp_hi2 = hi;
438 : gd->tmp_lo2 = lo;
439 : gd->pending = 1;
440 : }
441 : gd->mid2 = u8x32_xor3 (gd->mid2, gmul2_hi_lo (a, b), gmul2_lo_hi (a, b));
442 : }
443 :
444 : static_always_inline void
445 : ghash2_reduce (ghash_ctx_t *gd)
446 : {
447 : u8x32 r;
448 :
449 : /* Final combination:
450 : gd->lo2 ^= gd->mid2 << 64
451 : gd->hi2 ^= gd->mid2 >> 64 */
452 :
453 : u8x32 midl = u8x32_word_shift_left (gd->mid2, 8);
454 : u8x32 midr = u8x32_word_shift_right (gd->mid2, 8);
455 :
456 : if (gd->pending)
457 : {
458 : gd->lo2 = u8x32_xor3 (gd->lo2, gd->tmp_lo2, midl);
459 : gd->hi2 = u8x32_xor3 (gd->hi2, gd->tmp_hi2, midr);
460 : }
461 : else
462 : {
463 : gd->lo2 ^= midl;
464 : gd->hi2 ^= midr;
465 : }
466 :
467 : r = gmul2_hi_lo (ghash2_poly2, gd->lo2);
468 : gd->lo2 ^= u8x32_word_shift_left (r, 8);
469 : }
470 :
471 : static_always_inline void
472 : ghash2_reduce2 (ghash_ctx_t *gd)
473 : {
474 : gd->tmp_lo2 = gmul2_lo_lo (ghash2_poly2, gd->lo2);
475 : gd->tmp_hi2 = gmul2_lo_hi (ghash2_poly2, gd->lo2);
476 : }
477 :
478 : static_always_inline u8x16
479 : ghash2_final (ghash_ctx_t *gd)
480 : {
481 : u8x32 r;
482 :
483 : r = u8x32_xor3 (gd->hi2, u8x32_word_shift_right (gd->tmp_lo2, 4),
484 : u8x32_word_shift_left (gd->tmp_hi2, 4));
485 :
486 : /* horizontal XOR of 2 128-bit lanes */
487 : return u8x32_extract_hi (r) ^ u8x32_extract_lo (r);
488 : }
489 : #endif
490 :
491 : static_always_inline void
492 103154 : ghash_precompute (u8x16 H, u8x16 * Hi, int n)
493 : {
494 : u8x16 r8;
495 : u32x4 r32;
496 : /* calcullate H<<1 mod poly from the hash key */
497 103154 : r8 = (u8x16) ((u64x2) H >> 63);
498 103154 : H = (u8x16) ((u64x2) H << 1);
499 103154 : H |= u8x16_word_shift_left (r8, 8);
500 103154 : r32 = (u32x4) u8x16_word_shift_right (r8, 8);
501 : #ifdef __SSE2__
502 103154 : r32 = u32x4_shuffle (r32, 0, 1, 2, 0);
503 : #else
504 : r32[3] = r32[0];
505 : #endif
506 103154 : r32 = r32 == (u32x4) {1, 0, 0, 1};
507 103154 : Hi[n - 1] = H = H ^ ((u8x16) r32 & ghash_poly);
508 :
509 : /* calculate H^(i + 1) */
510 3713540 : for (int i = n - 2; i >= 0; i--)
511 3610390 : Hi[i] = ghash_mul (H, Hi[i + 1]);
512 103154 : }
513 :
514 : #endif /* __ghash_h__ */
515 :
|